
Arrays in Many
Dimensions

William T. Doan

20 November 2024

Introduction

Arrays in Many Dimensions

Arrays, as you have learned so far, only go in one dimension.
But data is seldom in one dimension!

Arrays in Many Dimensions

Consider

Time (s) Position (m)
0 0
1 2
2 4
3 9
4 16
5 25

0 2 4
0

10

20

30

Time (s)
Po
si
tio

n
(m

)

Arrays in Many Dimensions

De�nition

Multidimensional Arrays
A data structure which can store multiple lines of data in
two or more dimensions simultaneously.

Arrays in Many Dimensions

Sample No. 1

1

2 // An example of a 2D array.

3

4 int tests[4][3]

5

⌅ We denote each successive dimension of the array with [].
+ Recall: the indices of the array are o�sets which start at

0.

Arrays in Many Dimensions

Query No. 1.
What are the valid subscripts in the �rst and second
dimensions of the array tests[3][2]? How many elements
does tests have?

Arrays in Many Dimensions

2D Array Illustration

Suppose we have this code,

1 const int NUM_STUDENTS = 4;

2 const int NUM_TESTS = 3;

3 int tests[NUM_STUDENTS][NUM_TESTS];

4 tests[2][1] = 86;

The 2D array representation of such code is,

tests[0][0] tests[0][1] tests[0][2]

tests[1][0] tests[1][1] tests[1][2]

tests[2][0] tests[2][1] tests[2][2]

tests[3][0] tests[3][1] tests[3][2]

Arrays in Many Dimensions

tests[0][0] tests[0][1] tests[0][2]

tests[1][0] tests[1][1] tests[1][2]

tests[2][0] tests[2][1] tests[2][2]

tests[3][0] tests[3][1] tests[3][2]

We can access an element like this,

⌅ tests[2][1] = 86; means the box at row 3 column 2 is
assigned the value 86.

⌅ To access an element, use two subscripts like thus,
tests[row][column].

Arrays in Many Dimensions

Query No. 2.
Recall: the elements of an array can be accessed using a
for loop. How might we access the elements of a
multidimensional array?

Arrays in Many Dimensions

Remarks

When we access the elements of a multidimensional array using a
nested loop, one loop is used to cycle through the subscripts in
each dimension.

⌅ The subscripts of the dimension that we need to move across
most quickly are cycled through in the innermost loop.

⌅ The subscripts of the dimension that we need to move
through least quickly are cycled through in the outermost loop.

Arrays in Many Dimensions

Sample No. 2

1 const int NUM_DIVS = 3; // Number of divisions

2 const int NUM_QTRS = 4; // Number of quarters

3 double sales[NUM_DIVS][NUM_QTRS];

4 double totalSales = 0; // What the array will hold

5 int div, qtr; // Loop counters.

6

7 std::cout << "This program will calculate the total sales of\n";

8 std::cout << "all the company's divisions." << std::endl;

9 std::cout << "Enter the following sales informaton:\n\n";

10

11 // Begin nested loops to fill array.

12

13 for (div = 0; div < NUM_DIVS; div++) {

14

15 for (qtr = 0; qtr < NUM_QTRS; qtr++) {

16

17 std::cout << "Division " << (div + 1);

18 std::cout << ", Quarter " << (qtr + 1); << ": $";

19 std::cin >> sales[div][qtr]

20

21 }

22

23 std::cout << std::endl; // Print a blank line.

24

25 }

Arrays in Many Dimensions

On List Initialization

In the same way we can initialize an array with a list, the same can
be done for a 2D array.

1 int array[3][2] = { {5, 75}, {-9, 11}, {-20, -8} };

Query No. 3A.
Let us populate the table representation.

Arrays in Many Dimensions

Likewise, the 2D array can be partially initialized.

1 int array[3][2] = { {5}, {-9, 11} };

Query No. 3B.
Let us populate the table representation.

5

-9 11

Arrays in Many Dimensions

On 2D Arrays in Memory

Query No. 4.
Recall: 1D arrays are stored linearly in memory. How might
2D arrays be stored in memory?

Arrays in Many Dimensions

Corollary to Query No. 4.
The indices in the higher dimensions increase through all
possible values before the subscripts of the lower
dimensions change.

Arrays in Many Dimensions

1 int array[3][2] = {5, 75, -9, 11};

Array 5 75 -9 11 0 0
Subscripts: [0][0] [0][1] [1][0] [1][1] [2][0] [2][1]

Arrays in Many Dimensions

Passing 2D Arrays as Arguments

A two-dimensional array can be passed to a function as an
argument.

In doing so, we must,

⌅ use the array name in the function call.

⌅ remember it is actually the address of the array that is passed.

⌅ typically pass the number of elements in the �rst dimension in
an argument as well.

Arrays in Many Dimensions

The function prototype and header include one set of square brackets
for each dimension.

Furthermore, the size declarator is included for every dimension, but the
�rst. The reason for that is the array is stored linearly in memory and the
compiler must know how many elements there are in higher dimensions
to locate a particular element in the array.

1

2 // Prototype

3

4 void getScores(double [][NUMSCORES], int);

5

Arrays in Many Dimensions

Sample No. 3

1 const int COLS = 4; // Number of columns in each array

2 const int TBL1_ROWS = 3; // Number of rows in table no. 1

3 const int TBL2_ROWS = 4; // Number of rows in table no. 2

4

5 // Function prototype.

6

7 void showArray(const int [][COLS], int);

8

9 int main() {

10

11 int table1[TBL1_ROWS][COLS] = { {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12} };

12 int table2[TBL2_ROWS][COLS] = { {10, 20, 30, 40}, {50, 60, 70, 80},

13 {90, 100, 110, 120}, {130, 140, 15,0 160} };

14

15 std::cout << "The contents of table no. 1 are:\n";

16 showArray(table1, TBL1_ROWS);

17

18 std::cout << std::endl;

19

20 std::cout << "The contents of table no. 2 are:\n";

21 showArray(table2, TBL2_ROWS);

22

23 return 0;

24

25 }

Arrays in Many Dimensions

1 // With arguments of a 2D array of COLS columns and the number of rows

2 // in an array, showArray will display the contents of the input.

3

4 void showArray(const int array[][COLS], int rows) {

5

6 for (int i = 0; i < rows; i++) {

7

8 for (int j = 0; j < COLS; j++) {

9

10 std::cout << std::setw(4) << array[i][j] << " ";

11

12 }

13

14 std::cout << std::endl;

15

16 }

17

18 }

Arrays in Many Dimensions

The function declaration herewith has meaning.

1 void showArray(const int [][COLS], int);

Remember. The compiler treats multidimensional arrays as a contiguous
memory block, using the column size, not the row size, to access
individual elements. I.e., so long as we have the number of columns, the
compiler can infer the number of rows the array has.

Arrays in Many Dimensions

Commonly, the number of rows are passed as a separate
arguments. This permits a degree of �exibility in working with
arrays of di�ering row sizes without being tied to a speci�c value.
It is a design choice that works!

1 double scores1[4][3];

2 double scores2[5][3];

3

4 void getScores(double scores[][NUMSCORES], int numRows) {

5 for (int i = 0; i < numRows; ++i) {

6 for (int j = 0; j < NUMSCORES; ++j) {

7 std::cout << "scores[" << i << "][" << j << "] = " << scores[i][j] << "\n";

8 }

9 }

10 }

Arrays in Many Dimensions

On Arrays in Many Dimensions

We can de�ne arrays with any number of dimensions.

1 short rectSolid[2][3][5];

2 double timeGrid[3][4][3][4];

When used as parameter, specify all but the �rst dimension in the
prototype and function header.

1 void getRectSolid(short [][3][5], int);

Arrays in Many Dimensions

Exercise No. 1

In the segment below we de�ne an array of integers named
temperatures that can store the recorded temperatures for every
hour of every day for �ve years.

1 const int NUM_YEARS = 5;

2 const int NUM_DAYS = 365;

3 const int NUM_HOURS = 24;

4 int temperatures[NUM_YEARS][NUM_DAYS][NUM_HOURS];

1.) How many dimensions does temperatures have?
2.) How many elements does the array have?
3.) What are the valid subscripts in each dimension?

Arrays in Many Dimensions

Exercise No. 2

Write a statement to assign the temperature 91 to the element that
corresponds to the fourth year, the two hundred and eighth day,
and the �fteenth hour of the array named temperatures.

1 const int NUM_YEARS = 5;

2 const int NUM_DAYS = 365;

3 const int NUM_HOURS = 24;

4 int temperatures[NUM_YEARS][NUM_DAYS][NUM_HOURS];

Arrays in Many Dimensions

Exercise No. 3

Write a statement to display the temperature stored in the array
temperatures for the last hour of the tenth day of the �rst year.

1 const int NUM_YEARS = 5;

2 const int NUM_DAYS = 365;

3 const int NUM_HOURS = 24;

4 int temperatures[NUM_YEARS][NUM_DAYS][NUM_HOURS];

Arrays in Many Dimensions

Exercise Answers

1A.) three.

1B.) 5⇥ 365⇥ 24 = 43, 800

1C.) the �rst: zero to four; the second: zero to 364; the third: zero to
twenty three.

The answer to Exercise No. 2 is,

1 temperatures[3][207][14] = 91;

The answer to Exercise No. 3 is,

1 cout << temperatures[0][9][23];

Arrays in Many Dimensions

Arrays in Many
Dimensions

William T. Doan

20 November 2024

Introduction

Arrays in Many Dimensions

Arrays, as you have learned so far, only go in one dimension.
But data is seldom in one dimension!

Arrays in Many Dimensions

Consider

Time (s) Position (m)
0 0
1 2
2 4
3 9
4 16
5 25

0 2 4
0

10

20

30

Time (s)
Po
si
tio

n
(m

)

Arrays in Many Dimensions

De�nition

Multidimensional Arrays
A data structure which can store multiple lines of data in
two or more dimensions simultaneously.

Arrays in Many Dimensions

Sample No. 1

1

2 // An example of a 2D array.

3

4 int tests[4][3]

5

⌅ We denote each successive dimension of the array with [].
+ Recall: the indices of the array are o�sets which start at

0.

Arrays in Many Dimensions

Query No. 1.
What are the valid subscripts in the �rst and second
dimensions of the array tests[3][2]? How many elements
does tests have?

Arrays in Many Dimensions

2D Array Illustration

Suppose we have this code,

1 const int NUM_STUDENTS = 4;

2 const int NUM_TESTS = 3;

3 int tests[NUM_STUDENTS][NUM_TESTS];

4 tests[2][1] = 86;

The 2D array representation of such code is,

tests[0][0] tests[0][1] tests[0][2]

tests[1][0] tests[1][1] tests[1][2]

tests[2][0] tests[2][1] tests[2][2]

tests[3][0] tests[3][1] tests[3][2]

Arrays in Many Dimensions

tests[0][0] tests[0][1] tests[0][2]

tests[1][0] tests[1][1] tests[1][2]

tests[2][0] tests[2][1] tests[2][2]

tests[3][0] tests[3][1] tests[3][2]

We can access an element like this,

⌅ tests[2][1] = 86; means the box at row 3 column 2 is
assigned the value 86.

⌅ To access an element, use two subscripts like thus,
tests[row][column].

Arrays in Many Dimensions

Query No. 2.
Recall: the elements of an array can be accessed using a
for loop. How might we access the elements of a
multidimensional array?

Arrays in Many Dimensions

Remarks

When we access the elements of a multidimensional array using a
nested loop, one loop is used to cycle through the subscripts in
each dimension.

⌅ The subscripts of the dimension that we need to move across
most quickly are cycled through in the innermost loop.

⌅ The subscripts of the dimension that we need to move
through least quickly are cycled through in the outermost loop.

Arrays in Many Dimensions

Sample No. 2

1 const int NUM_DIVS = 3; // Number of divisions

2 const int NUM_QTRS = 4; // Number of quarters

3 double sales[NUM_DIVS][NUM_QTRS];

4 double totalSales = 0; // What the array will hold

5 int div, qtr; // Loop counters.

6

7 std::cout << "This program will calculate the total sales of\n";

8 std::cout << "all the company's divisions." << std::endl;

9 std::cout << "Enter the following sales informaton:\n\n";

10

11 // Begin nested loops to fill array.

12

13 for (div = 0; div < NUM_DIVS; div++) {

14

15 for (qtr = 0; qtr < NUM_QTRS; qtr++) {

16

17 std::cout << "Division " << (div + 1);

18 std::cout << ", Quarter " << (qtr + 1); << ": $";

19 std::cin >> sales[div][qtr]

20

21 }

22

23 std::cout << std::endl; // Print a blank line.

24

25 }

Arrays in Many Dimensions

On List Initialization

In the same way we can initialize an array with a list, the same can
be done for a 2D array.

1 int array[3][2] = { {5, 75}, {-9, 11}, {-20, -8} };

Query No. 3A.
Let us populate the table representation.

Arrays in Many Dimensions

Likewise, the 2D array can be partially initialized.

1 int array[3][2] = { {5}, {-9, 11} };

Query No. 3B.
Let us populate the table representation.

5

-9 11

Arrays in Many Dimensions

On 2D Arrays in Memory

Query No. 4.
Recall: 1D arrays are stored linearly in memory. How might
2D arrays be stored in memory?

Arrays in Many Dimensions

Corollary to Query No. 4.
The indices in the higher dimensions increase through all
possible values before the subscripts of the lower
dimensions change.

Arrays in Many Dimensions

1 int array[3][2] = {5, 75, -9, 11};

Array 5 75 -9 11 0 0
Subscripts: [0][0] [0][1] [1][0] [1][1] [2][0] [2][1]

Arrays in Many Dimensions

Passing 2D Arrays as Arguments

A two-dimensional array can be passed to a function as an
argument.

In doing so, we must,

⌅ use the array name in the function call.

⌅ remember it is actually the address of the array that is passed.

⌅ typically pass the number of elements in the �rst dimension in
an argument as well.

Arrays in Many Dimensions

The function prototype and header include one set of square brackets
for each dimension.

Furthermore, the size declarator is included for every dimension, but the
�rst. The reason for that is the array is stored linearly in memory and the
compiler must know how many elements there are in higher dimensions
to locate a particular element in the array.

1

2 // Prototype

3

4 void getScores(double [][NUMSCORES], int);

5

Arrays in Many Dimensions

Sample No. 3

1 const int COLS = 4; // Number of columns in each array

2 const int TBL1_ROWS = 3; // Number of rows in table no. 1

3 const int TBL2_ROWS = 4; // Number of rows in table no. 2

4

5 // Function prototype.

6

7 void showArray(const int [][COLS], int);

8

9 int main() {

10

11 int table1[TBL1_ROWS][COLS] = { {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12} };

12 int table2[TBL2_ROWS][COLS] = { {10, 20, 30, 40}, {50, 60, 70, 80},

13 {90, 100, 110, 120}, {130, 140, 15,0 160} };

14

15 std::cout << "The contents of table no. 1 are:\n";

16 showArray(table1, TBL1_ROWS);

17

18 std::cout << std::endl;

19

20 std::cout << "The contents of table no. 2 are:\n";

21 showArray(table2, TBL2_ROWS);

22

23 return 0;

24

25 }

Arrays in Many Dimensions

1 // With arguments of a 2D array of COLS columns and the number of rows

2 // in an array, showArray will display the contents of the input.

3

4 void showArray(const int array[][COLS], int rows) {

5

6 for (int i = 0; i < rows; i++) {

7

8 for (int j = 0; j < COLS; j++) {

9

10 std::cout << std::setw(4) << array[i][j] << " ";

11

12 }

13

14 std::cout << std::endl;

15

16 }

17

18 }

Arrays in Many Dimensions

The function declaration herewith has meaning.

1 void showArray(const int [][COLS], int);

Remember. The compiler treats multidimensional arrays as a contiguous
memory block, using the column size, not the row size, to access
individual elements. I.e., so long as we have the number of columns, the
compiler can infer the number of rows the array has.

Arrays in Many Dimensions

Commonly, the number of rows are passed as a separate
arguments. This permits a degree of �exibility in working with
arrays of di�ering row sizes without being tied to a speci�c value.
It is a design choice that works!

1 double scores1[4][3];

2 double scores2[5][3];

3

4 void getScores(double scores[][NUMSCORES], int numRows) {

5 for (int i = 0; i < numRows; ++i) {

6 for (int j = 0; j < NUMSCORES; ++j) {

7 std::cout << "scores[" << i << "][" << j << "] = " << scores[i][j] << "\n";

8 }

9 }

10 }

Arrays in Many Dimensions

On Arrays in Many Dimensions

We can de�ne arrays with any number of dimensions.

1 short rectSolid[2][3][5];

2 double timeGrid[3][4][3][4];

When used as parameter, specify all but the �rst dimension in the
prototype and function header.

1 void getRectSolid(short [][3][5], int);

Arrays in Many Dimensions

Exercise No. 1

In the segment below we de�ne an array of integers named
temperatures that can store the recorded temperatures for every
hour of every day for �ve years.

1 const int NUM_YEARS = 5;

2 const int NUM_DAYS = 365;

3 const int NUM_HOURS = 24;

4 int temperatures[NUM_YEARS][NUM_DAYS][NUM_HOURS];

1.) How many dimensions does temperatures have?
2.) How many elements does the array have?
3.) What are the valid subscripts in each dimension?

Arrays in Many Dimensions

Exercise No. 2

Write a statement to assign the temperature 91 to the element that
corresponds to the fourth year, the two hundred and eighth day,
and the �fteenth hour of the array named temperatures.

1 const int NUM_YEARS = 5;

2 const int NUM_DAYS = 365;

3 const int NUM_HOURS = 24;

4 int temperatures[NUM_YEARS][NUM_DAYS][NUM_HOURS];

Arrays in Many Dimensions

Exercise No. 3

Write a statement to display the temperature stored in the array
temperatures for the last hour of the tenth day of the �rst year.

1 const int NUM_YEARS = 5;

2 const int NUM_DAYS = 365;

3 const int NUM_HOURS = 24;

4 int temperatures[NUM_YEARS][NUM_DAYS][NUM_HOURS];

Arrays in Many Dimensions

Exercise Answers

1A.) three.

1B.) 5⇥ 365⇥ 24 = 43, 800

1C.) the �rst: zero to four; the second: zero to 364; the third: zero to
twenty three.

The answer to Exercise No. 2 is,

1 temperatures[3][207][14] = 91;

The answer to Exercise No. 3 is,

1 cout << temperatures[0][9][23];

Arrays in Many Dimensions

